Course Type	Course Code	Name of Course	L	Т	P	Credit
DE	NPHD523	CHRACTERIZATION TECHNIQUES	3	0	0	3

Prerequisite: Condensed Matter Physics, Spectroscopy.

Course Obj	ective
------------	--------

To make students acquaint with advanced materials characterization tools required for scientific research and development field.

Learning Outcomes

After completing the course, students will learn

- Basic principles and working of each technique.
- Methodology of data recording, analysis and interpretation of observations.
- How and when a particular technique needs to be used to get required information.

Unit No.	Topics to be Covered	Lecture Hours	Learning Outcome
1	Microstructure Characterization techniques: Light microscopy- bright field, dark field, phase contrast illumination, Ellipsometry, Spectral reflectance, Scanning Electron Microscope (SEM), Transmission electron microscope (TEM), Atomic force microscopy (AFM), Scanning tunnelling microscopy (STM).	6	In this section students will learn basics of instrumentation used to get microstructural information of samples.
2	Spectroscopic techniques: Spectrophotometry, Luminescence spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, Raman spectroscopy, Surface plasmon resonance (SPR) spectroscopy, Dynamic light scattering (DLS), Inductively Couple Plasma Mass Spectroscopy (ICPMS).	9	This section devotes to the spectroscopic tools used in characterization of various samples. Student will learn several important spectroscopic tools.
3	Compositional characterization techniques: X-ray and Ultra-violet Photoelectron Spectroscopy (XPS and UPS), Energy Dispersive X-ray analysis (EDAX), X-ray Fluorescence Spectroscopy (XRF), Rutherford Backscattering Spectroscopy (RBS), Inductively Coupled Plasma Mass Spectrometry (ICPMS).	8	Students in this section will learn techniques used to get compositional information of the samples.
4	Crystalline Structure characterization techniques: X-ray diffraction (XRD), Transmission Electron diffraction (TED).	2	It introduces X-ray based crystal structure analysis
5	Electrical characterization techniques: Measurement of resistivity by four-probe method, Impedance and ferroelectric measurements, flow cyclic voltammetry.	4	Student will learn basic electrical property measurement tools
6	Characterization of Mechanical Properties: Micro / Nanoindenter, Nanoindentation and bending tests by AFM, Frictional Force Microscopy.	5	It introduces techniques to get mechanical strength of the sample.
7	Magnetic characterization techniques: Vibrating Sample Magnetometer (VSM), Superconducting Quantum Interference Device (SQUID), and Magnetic Force Microscopy (MFM).	4	In this section students will learn magnetic property measurement tools
	Total	42	

Text Books:

- 1. Microstructural characterization of materials, D. Brandon and W. Kaplan, John Wiley and Sons, 2013.
- 2. Surface Characterization Methods: Principles, Techniques and Applications; Milling; CRC Press; 1999.
- 3. ASM Handbook: Volume 10: Materials Characterization; George M. Crankovic; ASM International; 1986.

Reference Books:

- Encyclopaedia of Materials Characterization Surfaces, Interfaces, Thin Films; Brundle, Richard, Evans and Shaun; Elsevier; 1992.
- 2. Characterization of Semiconductor Materials Principles and Methods; McGuire; William Andrew Publishing / Noyes; 1989.
- 3. Optical Techniques for Solid-State Materials Characterization, Rohit P. Prasankumar, Antoinette J. Taylor, CRC Press, 2010.
- 4. Foundation of Spectroscopy. Simon Duckett and Bruce Gilbert. Oxford University Press. 2005.
- 5. Elements of X-ray Diffraction, Cullity B D., Stock S R, Prentice Hall, Inc. 2001.
- 6. Principles of Thermal Analysis and Calorimetry, Peter J. Haines, RSC, 2002.